初窥“AI制药”:BAT们的下个万亿试炼场(2)
20世纪80年代之后,基因组学、蛋白质组学、生物信息学等现代分子生物学科得到发展,以靶点为基础的新药研发模式得到应用。
如今,新药物发现的大致过程需要先发现靶点-验证靶点-发现先导物-优化先导物,从数十万个化合物中选出几个候选药物,最后再进入临床试验环节。靶点可以理解为不同疾病关键点构成的“锁”,人们在众多药物分子可能性中,设计和筛选最合适的分子作为“钥匙”去解锁。
人们利用计算机辅助制药(CADD)来评估分子多样性、构建化合物库、开展基于分子相似性的筛选。建立大型化合物库与生物靶标自动对接软件,并分别打包变成研发系统的组件。
CADD的应用,一方面能够允许研究者减少实验来评估化合物的有效性,直接在电脑上就能设计和“改造”分子。但另一方面,这些分子仍需要人工搭建生成,并与资料库比对。这些前期工作需要从上万个化合物中一个个筛选无异于“大海捞针”。
图:药物研发流程示意。来源:塔夫茨药物开发研究中心这种对人来说的繁琐工作,恰恰是AI非常典型的应用场景。
今天所说的AI制药就是利用AI的归纳推理能力,分析实验数据优化药物研发环节;利用AI算力优势,物理层面演绎分子结构从而加速筛选优化先导物。换句话说,AI制药把创新药行业的规则扭转到了比特币“挖矿”的逻辑。谁的算力大,谁的模型做的好,谁就能率先进入临床试验。
AI制药可以跳过原来漫长的临床前的研发时间,降低前期研究所耗费巨大的人力和材料成本,直接推选出最符合要求的候选药物。而这恰恰是创新药前期研发的全部流程。谁能率先发现新的靶点,谁就能摆脱其他的同类追随者。
以治疗肿瘤的PD-1为例,这个靶点上密密麻麻趴满了等待套利的伪创新药企业,同业竞争压力巨大。跟这些追随者竞争,就算成功跑了出来,在中国也要面临医保费用有限购买力的“大剪刀”,让这些fast in follow、me too、me better企业蹦跶不了太高。
AI制药的大面积应用这将允许药企能够摆脱经费不充足的压力,可以不再追热度、抄作业,向着Best in Class(同类最优)甚至First in Class(同类第一)进军。更好地吃到独家特效药所带来的收益,为社会和股东创造价值。
在算力取得长足进步的今天,AI制药在硬件上具备了施展的可行性。AI制药的实力如何,还得看赛道上的玩家做得怎么样。